

## STRUCTURAL HEALTH MONITORING: SECURING THE FUTURE OF COMMERCIAL INSURANCE



# Transforming Commercial Property Insurance with AI-Enabled Structural Health Monitoring

Article written by Marty Dugan, January 3<sup>rd</sup> 2026

## Introduction: The Silent Crisis in Commercial Risk

The global commercial property insurance market is on a fault line. It is not just tectonic; it is also technological and systemic. For decades, the industry has relied on a retrospective, sporadic risk assessment model. Underwriters set policy prices based on historical actuarial tables, a building's age, and manual inspections that occur perhaps once a year or once a decade. This method assumes that a building's structural integrity remains unchanged between inspections. However, the built environment is dynamic. Buildings age, materials fatigue, and the frequency of catastrophic natural events, from seismic shocks to severe convective storms, is increasing.<sup>1</sup> According to Swiss Re Institute's *sigma* research, global insured losses from natural catastrophes are expected to exceed \$100 billion for the sixth straight year in 2025, mainly driven by secondary perils and urbanization in hazard-prone areas.<sup>2</sup> In this unpredictable landscape, the traditional "repair and replace" model is becoming financially unsustainable.

The solution lies in a paradigm shift from reactive indemnity to proactive resilience.<sup>3</sup> The vehicle for this shift is next-generation Structural Health Monitoring (SHM) technology: AI-enabled wireless seismic sensors coupled with structural engineering algorithms and SaaS data delivery. This technology, exemplified by platforms like StructureIQ, offers the insurance industry what it has historically lacked: an objective, 24/7, real-time pulse on the assets it insures.

## The Obsolescence of Analog Assessment

To understand the value of modern SHM, one must first confront the limitations of the current standard. Today, assessing the risk of a commercial high-rise or industrial facility relies heavily on manual inspections. These are labor-intensive, costly, and inherently subjective. A human inspector, no matter how qualified, can only assess what is visible. They look for surface cracks, corrosion, or spalling concrete.

In recent years, the industry has shifted toward drone technology to enhance this process.<sup>4</sup> While drones offer major benefits over manual climbing, such as improving safety and delivering high-resolution aerial imagery, they remain tools for visual and occasional inspections. A drone can identify a missing shingle or a facade crack, but it cannot "feel" the internal vibrations of a steel frame or detect micro-shifts in a foundation that might precede a collapse.<sup>5</sup> Moreover, these assessments are snapshots taken at a single point in time. If a magnitude 4.0 earthquake occurs a week after an inspection, the insurer is unaware of the internal stress buildup until the next scheduled visit. In the meantime, the building could be structurally compromised, creating liability risks for occupants and financial risks for the insurer.

## The 24/7 Digital Twin: A New Standard of Truth

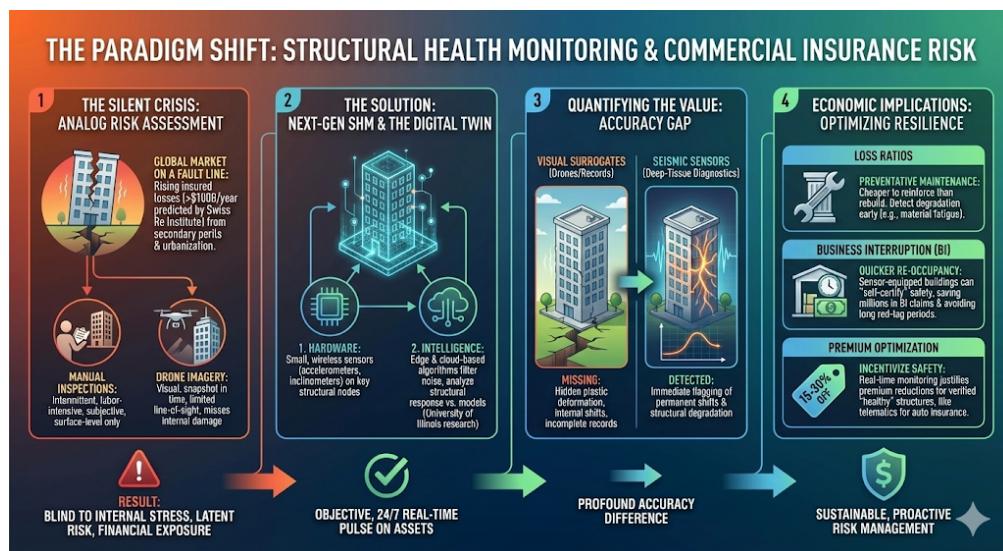
Advanced SHM systems replace this episodic uncertainty with continuous certainty.<sup>5</sup> The architecture of these systems, such as those pioneered by StructureIQ, is a tripartite solution:

1. **Hardware:** Small, non-intrusive wireless sensors (accelerometers and inclinometers) installed on key structural nodes.
2. **Intelligence:** Edge computing and cloud-based algorithms that filter noise and analyze structural response against engineering models.
3. **Delivery:** A SaaS dashboard that presents actionable risk grades (e.g., Green/Yellow/Red) to building owners and insurers anywhere in the world.



The core value proposition here is the transition from subjective opinion to objective data. Research from the University of Illinois at Urbana-Champaign, specifically the Smart Structures Technology Laboratory (SSTL) led by Professor B.F. Spencer Jr., has long demonstrated the efficacy of "smart sensors."<sup>6</sup> Their work on distributed structural health monitoring highlights how wireless sensor networks can process

data locally (at the "edge") to identify damage in real-time, rather than transmitting terabytes of raw data to a central server.


When applied to commercial insurance, this technology creates a "digital twin" of the building's structural health. An insurer in London can look at a dashboard and see that a warehouse in California just experienced a seismic event. Crucially, the system does not just report *that* the ground shook; it reports how the *building responded*. Did the inter-story drift exceed safe tolerances? Did the natural frequency of the structure change, indicating stiffness degradation? This level of granularity allows for "parametric insurance" products, where claims can be triggered automatically by verified data thresholds, slashing the administrative costs of claims adjustment and eliminating disputes over the cause of damage.

## Quantifying the Value: Accuracy and Economics

The accuracy gap between physical sensors and visual surrogates (drones/records) is profound. Old structural records are often missing or inaccurate due to unrecorded renovations. Drones are limited by line-of-sight. In contrast, seismic sensors provide deep-tissue diagnostics. For example, after a seismic event, a building might show no exterior cracks (passing a visual/drone inspection) but may have suffered plastic deformation in its beam-column joints. A sensor network detecting a permanent shift in the building's period of vibration would flag this immediately.

The economic implications for the Commercial Property market are staggering.

- **Loss Ratios:** By detecting degradation early (e.g., foundation settling or material fatigue), insurers can mandate preventative maintenance. It is far cheaper to reinforce a column than to rebuild a collapsed wing.
- **Business Interruption (BI):** BI claims are often more costly than physical damage. After a disaster, buildings are frequently "red-tagged" (closed) pending a manual inspection, which can take weeks due to a shortage of engineers. A sensor-equipped building can potentially "self-certify" its safety, allowing for immediate re-occupancy and saving millions in BI claims.
- **Premium Optimization:** Just as telematics allowed auto insurers to discount safe drivers, SHM allows property insurers to discount resilient buildings. Estimates suggest that real-time risk monitoring could justify premium reductions of **15–30%** for verified "healthy" structures, incentivizing owners to invest in safety.<sup>4</sup>



## Navigating the Challenges: Integration and Installation

Despite the clear ROI, widespread adoption faces challenges. The first is the insurance industry's historical reluctance toward on-site hardware. There is a concern about "alert fatigue"—underwriters do not want to be overwhelmed with raw vibration data every time a heavy truck passes by. This is where the StructureIQ model of "AI-enabled" filtering becomes essential. The insurance industry does not require just data; it needs insights. The backend algorithms must serve as filters, only escalating events that statistically deviate from the building's baseline behavior.

The second challenge is data integration. Insurers rely on legacy risk management platforms (RMS, AIR) that were designed for static data fields like Year Built, Sq. Footage, and Construction Type. Integrating a dynamic, time-series data stream into these static models demands new API standards and a willingness to update underwriting workflows. However, the "Internet of Things" (IoT) revolution in insurance is already gaining ground in other sectors (e.g., leak detectors in homes), paving the way for the use of structural sensors.

## Conclusion: The Future is Measured

The era of guessing the structural integrity of a commercial asset is coming to an end. As climate change worsens the frequency of natural disasters, the insurance industry can no longer afford to operate blindly between renewal periods.

Technologies that combine wireless sensing, AI diagnostics, and SaaS delivery provide a bridge to a sustainable future. They turn a building from a passive asset into a communicating entity, able to report its own damages. For the commercial property insurance market, this isn't just an upgrade in technology; it's the fundamental difference between paying for a disaster and preventing one.

---

### References:

1. **Swiss Re Institute.** (2025). *sigma 1/2025: Natural catastrophes: insured losses on trend to USD 145 billion.* Zurich: Swiss Re.
2. **Spencer, B. F., Jr., & Yun, C. B.** (2010). "Wireless Smart Sensors for Structural Health Monitoring." *Smart Structures Technology Laboratory, University of Illinois at Urbana-Champaign.*
3. **FEMA.** (2023). *Building Codes Save: A Nationwide Study on Hazard-Resistant Building Codes.* Washington, D.C.: Federal Emergency Management Agency.
4. **Lloyd's of London.** (2024). *The Future of City Risk: IoT and AI in Urban Resilience.*
5. **Illinois Structural Health Monitoring Project (ISHMP).** (n.d.). *Research and Toolsuite for Distributed Structural Health Monitoring.* University of Illinois at Urbana-Champaign.  
<http://shm.cs.illinois.edu/>

---

-END-